HEART FAILURE: A CODING CLASSIFICATION QUANDARY

By Richard Pinson, MD, FACP

According to the American Heart Association (AHA), over 5 million Americans have heart failure and about 58,000 deaths per year have heart failure as the primary cause. Heart failure results from functional or structural abnormalities that impair diastolic filling or systolic ejection of blood.

Heart failure may be classified on the basis of functional status, stage, etiology, or pathophysiologic mechanism. The New York Heart Association (NYHA) functional classification is based on the degree of physical activity limitation (see Table 1). The ACC/AHA also recognize 4 stages of heart failure (see Table 2) based on symptoms and the clinical progression of structural changes in the heart. Heart failure may also be clinically classified based on etiology, including conditions such as those listed in Table 3. Heart failure is pathophysiologically based on systolic and/or diastolic dysfunction.

The documentation dilemma for correct coding to accurately reflect severity of illness arises from the fact that official coding guidelines rely heavily on the pathophysiologic classification of systolic or diastolic dysfunction. The guidelines do acknowledge etiologic distinctions, but these codes rarely capture the severity of illness of hospitalized patients unless systolic and/or diastolic dysfunction and its acuity are also identified. Stage and NYHA classification are not recognized, as there are no codes provided to describe them.

Heart failure may be classified on the basis of functional status, stage, etiology, or pathophysiologic mechanism. The New York Heart Association (NYHA) functional classification is based on the degree of physical activity limitation (see Table 1). The ACC/AHA also recognize 4 stages of heart failure (see Table 2) based on symptoms and the clinical progression of structural changes in the heart. Heart failure may also be clinically classified based on etiology, including conditions such as those listed in Table 3. Heart failure is pathophysiologically based on systolic and/or diastolic dysfunction.

The documentation dilemma for correct coding to accurately reflect severity of illness arises from the fact that official coding guidelines rely heavily on the pathophysiologic classification of systolic or diastolic dysfunction. The guidelines do acknowledge etiologic distinctions, but these codes rarely capture the severity of illness of hospitalized patients unless systolic and/or diastolic dysfunction and its acuity are also identified. Stage and NYHA classification are not recognized, as there are no codes provided to describe them.

Heart failure may be classified on the basis of functional status, stage, etiology, or pathophysiologic mechanism. The New York Heart Association (NYHA) functional classification is based on the degree of physical activity limitation (see Table 1). The ACC/AHA also recognize 4 stages of heart failure (see Table 2) based on symptoms and the clinical progression of structural changes in the heart. Heart failure may also be clinically classified based on etiology, including conditions such as those listed in Table 3. Heart failure is pathophysiologically based on systolic and/or diastolic dysfunction.

The documentation dilemma for correct coding to accurately reflect severity of illness arises from the fact that official coding guidelines rely heavily on the pathophysiologic classification of systolic or diastolic dysfunction. The guidelines do acknowledge etiologic distinctions, but these codes rarely capture the severity of illness of hospitalized patients unless systolic and/or diastolic dysfunction and its acuity are also identified. Stage and NYHA classification are not recognized, as there are no codes provided to describe them.

The diagnosis of heart failure is, first and foremost, clinical, based on history and physical examination supplemented by diagnostic testing. Patients may present with fatigue, dyspnea (with or without exertion), and/or evidence of fluid retention. Because some patients do not have evidence of fluid accumulation (congestion), the American College of Cardiology (ACC) recommends the diagnostic term “heart failure” now be used in preference to “congestive heart failure (CHF).”

Heart failure may be classified on the basis of functional status, stage, etiology, or pathophysiologic mechanism. The New York Heart Association (NYHA) functional classification is based on the degree of physical activity limitation (see Table 1). The ACC/AHA also recognize 4 stages of heart failure (see Table 2) based on symptoms and the clinical progression of structural changes in the heart. Heart failure may also be clinically classified based on etiology, including conditions such as those listed in Table 3. Heart failure is pathophysiologically based on systolic and/or diastolic dysfunction.

The documentation dilemma for correct coding to accurately reflect severity of illness arises from the fact that official coding guidelines rely heavily on the pathophysiologic classification of systolic or diastolic dysfunction. The guidelines do acknowledge etiologic distinctions, but these codes rarely capture the severity of illness of hospitalized patients unless systolic and/or diastolic dysfunction and its acuity are also identified. Stage and NYHA classification are not recognized, as there are no codes provided to describe them.

Heart failure may be classified on the basis of functional status, stage, etiology, or pathophysiologic mechanism. The New York Heart Association (NYHA) functional classification is based on the degree of physical activity limitation (see Table 1). The ACC/AHA also recognize 4 stages of heart failure (see Table 2) based on symptoms and the clinical progression of structural changes in the heart. Heart failure may also be clinically classified based on etiology, including conditions such as those listed in Table 3. Heart failure is pathophysiologically based on systolic and/or diastolic dysfunction.

The documentation dilemma for correct coding to accurately reflect severity of illness arises from the fact that official coding guidelines rely heavily on the pathophysiologic classification of systolic or diastolic dysfunction. The guidelines do acknowledge etiologic distinctions, but these codes rarely capture the severity of illness of hospitalized patients unless systolic and/or diastolic dysfunction and its acuity are also identified. Stage and NYHA classification are not recognized, as there are no codes provided to describe them.

The diagnosis of heart failure is, first and foremost, clinical, based on history and physical examination supplemented by diagnostic testing. Patients may present with fatigue, dyspnea (with or without exertion), and/or evidence of fluid retention. Because some patients do not have evidence of fluid accumulation (congestion), the American College of Cardiology (ACC) recommends the diagnostic term “heart failure” now be used in preference to “congestive heart failure (CHF).”

Heart failure may be classified on the basis of functional status, stage, etiology, or pathophysiologic mechanism. The New York Heart Association (NYHA) functional classification is based on the degree of physical activity limitation (see Table 1). The ACC/AHA also recognize 4 stages of heart failure (see Table 2) based on symptoms and the clinical progression of structural changes in the heart. Heart failure may also be clinically classified based on etiology, including conditions such as those listed in Table 3. Heart failure is pathophysiologically based on systolic and/or diastolic dysfunction.

The documentation dilemma for correct coding to accurately reflect severity of illness arises from the fact that official coding guidelines rely heavily on the pathophysiologic classification of systolic or diastolic dysfunction. The guidelines do acknowledge etiologic distinctions, but these codes rarely capture the severity of illness of hospitalized patients unless systolic and/or diastolic dysfunction and its acuity are also identified. Stage and NYHA classification are not recognized, as there are no codes provided to describe them.