Bleeding and Acute Blood Loss Anemia

By Richard Pinson, MD, FACP

A acute blood loss from any cause—GI bleeding, trauma, surgery—may result in anemia. One might think that anemia ought to be a self-evident, intrinsic consequence of acute blood loss, but from a coding perspective it is a separate identifiable condition that contributes independently to patient risk and severity of illness.

The actual definition of anemia is “decreased red blood cell volume,” but hemoglobin/hematocrit levels are the usual surrogate measures used clinically. The lower normal limits of hemoglobin and hematocrit for men and women are shown in the table. A level lower than these may be considered indicative of anemia.

If a patient with acute bleeding loses enough blood to become anemic, the diagnosis of acute blood loss anemia is appropriate. This definition also encompasses patients who have preexisting anemia and become more anemic due to bleeding. Even if the amount of blood lost following surgery is expected and routinely associated with the procedure, acute blood loss anemia is still present if anemia occurs. A common example of this is substantial bleeding and consequent anemia associated with joint replacement surgery.

Blood transfusion is not required to substantiate the diagnosis of acute blood loss anemia. However, if a transfusion is necessary, acute blood loss anemia is almost certainly present, since transfusions are not given to patients who don’t have anemia or will not become anemic.

Concerned surgeons can be reassured that the code for acute blood loss anemia is not classified as a “complication of surgery.” This diagnosis will not adversely impact a surgeon’s complication rates or quality scores.

In contrast to acute blood loss anemia, a diagnosis of “postoperative hemorrhage” may result in coding of a surgical complication. Based on coding guidelines, the “complication” code for post-op hemorrhage should not be assigned unless a physician (attending or consultant) specifically indicates that the hemorrhage was due to, or resulted from, the procedure. Unfortunately, many coders mistakenly believe that the term “post-op” should be used judiciously to describe any postoperative event associated with the procedure, acute blood loss anemia is still present if anemia occurs. A common example of this is substantial bleeding and consequent anemia associated with joint replacement surgery.

Blood transfusion is not required to substantiate the diagnosis of acute blood loss anemia. However, if a transfusion is necessary, acute blood loss anemia is almost certainly present, since transfusions are not given to patients who don’t have anemia or will not become anemic.

Concerned surgeons can be reassured that the code for acute blood loss anemia is not classified as a “complication of surgery.” This diagnosis will not adversely impact a surgeon’s complication rates or quality scores.

In contrast to acute blood loss anemia, a diagnosis of “postoperative hemorrhage” may result in coding of a surgical complication. Based on coding guidelines, the “complication” code for post-op hemorrhage should not be assigned unless a physician (attending or consultant) specifically indicates that the hemorrhage was due to, or resulted from, the procedure. Unfortunately, many coders mistakenly believe that the term “post-op” should be used judiciously to describe a condition that occurs after surgery (such as arrhythmia, atelectasis bleeding, fever, ileus, renal failure, urinary retention, etc.) to avoid improper coding of a “complication” of the procedure. Complication codes are intended for conditions that are unusual or unexpected—not something commonly associated with the procedure—and then only when specifically connected to the procedure by a physician (that is, when a cause-and-effect relationship is established). Finally, when a postoperative event is associated with a preexisting condition or preoperative diagnosis, it should be clearly documented as such and not as a result of the procedure.

In summary, acute blood loss anemia occurs frequently in patients with acute bleeding from any cause and is a significant indicator of severity of illness that should be clearly documented in the medical record. The term “postoperative hemorrhage” may lead to incorrect coding of a complication of care. Physicians should be cautious when using the term “post-op” to describe any condition since it may be misinterpreted as meaning “due to surgery,” resulting in the assignment of a “complication” code.

Richard Pinson, MD, FACP, is a certified coding specialist and co-founder of HCQ Consulting (www.hcqconsulting.com) in Houston. This content is adapted with permission from HCQ Consulting.

ACUTE BLOOD LOSS ANEMIA EXAMPLES

Example 1: A 50-year-old former professional football player has knee replacement surgery. His hemoglobin level is 16.2 g/dL before surgery and 13.8 g/dL after surgery. Does he have acute blood loss anemia? Does this suggest a hemorrhagic complication of surgery?

Answer: He does not have acute blood loss anemia because he did not become anemic even though the amount of blood lost was substantial, as indicated by the decline in hemoglobin concentration. This amount of bleeding is common and expected with knee replacement surgery and should not be considered a complication of the procedure.

Example 2: A 30-year-old mother of three undergoes a transvaginal hysterectomy for prolapsed uterus and menometrorrhagia. Her hemoglobin level is 11.5 g/dL before surgery and 9.0 g/dL after surgery. Does she have acute blood loss anemia? Was the procedure complicated by unexpected hemorrhage?

Answer: She does have acute blood loss anemia; she was anemic preoperatively but substantially more so afterward due to operative blood loss. Based on the above information, it is not clear whether an unexpected or unusual amount of blood loss occurred that would constitute a surgical complication. A physician would have to document the blood loss’s significance and any connection with the procedure for the “complication” code to be assigned.

Hemoglobin, hematocrit limits

<table>
<thead>
<tr>
<th></th>
<th>Hemoglobin</th>
<th>Hematocrit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>12.0 g/dL</td>
<td>36%</td>
</tr>
<tr>
<td>Men</td>
<td>13.5 g/dL</td>
<td>40%</td>
</tr>
</tbody>
</table>